Mathematics | Grade 5

The descriptions below provide an overview of the mathematical concepts and skills that students explore throughout the $5^{\text {th }}$ grade.

Operations and Algebraic Thinking

Students build on their understanding of patterns to generate two numerical patterns using given rules and identify relationships between the patterns. For the first time, students form ordered pairs and graph them on a coordinate plane. In addition, students write and evaluate numerical expressions using parentheses and/or brackets.

Number and Operations in Base Ten

Students generalize their understanding of place value to include decimals by reading, writing, comparing, and rounding numbers. They recognize that in a multi-digit number, the value of each digit has a relationship to the value of the same digit in another position. Students explain patterns in products when multiplying a number by a power of 10 . Whole-number exponents are used to denote powers of 10 for the first time. By the end of $5^{\text {th }}$ grade, students should fluently multiply multi-digit whole numbers (up to 4 digits by 3 digits).

Students build on their understanding of why division procedures work based on place value and the properties of operations to find whole number quotients and remainders (See Table 3 - Properties of Operations). They apply their understanding of models for decimals, decimal notation, and properties of operations to add, subtract, multiply, and divide decimals to hundredths. (Limit division problems so that either the dividend or the divisor is a whole number.) They develop fluency in these computations and make reasonable estimates of their results. Students finalize their understanding of multi-digit addition, subtraction, multiplication, and division with whole numbers.

Number and Operations in Fractions

Students apply their understanding of equivalent fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions and make reasonable estimates of them. For the first time, students develop an understanding of fractions as division problems. They use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. (Limit to dividing unit fractions by whole numbers or whole numbers by unit fractions.) Students reason about the size of products compared to the size of the factors. Students should solve a variety of problem types in order to make connections among contexts, equations, and strategies (See Table 1 - Addition and Subtraction Situations and Table 2 - Multiplication and Division Situations for whole number situations that can be applied to fractions).

Measurement and Data

Students build on their understanding of area and recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-sized units of volume required to fill the space without gaps or overlaps. Students decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of cubes. Students build on their understanding of measurements to convert from larger units to smaller units within a single system of measurement and solve multistep problems involving these conversions. Students solve problems with data from line plots involving fractions using operations appropriate for the grade.

Geometry

Students plot points on the coordinate plane to solve real-world and mathematical problems. Students classify two-dimensional figures into categories based on their properties.

Cluster Headings

	5.OA.A. 1 Use parentheses and/or brackets in numerical expressions and evaluate expressions having these symbols using the conventional order (Order of Operations).
A. Write and interpret numerical expressions.	5.OA.A.2 Write simple expressions that record calculations with numbers and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as $2 x(8+7)$. Recognize that $3 x$ $(18,932+921)$ is three times as large as 18,932 + 921, without having to calculate the indicated sum or product.
B. Analyze patterns and	
relationships.	5.OA.B.3 Generate two numerical patterns using two given rules. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6 " and the starting number 0, generate terms in the resulting sequences. a. Identify relationships between corresponding terms in two numerical patterns. For example, observe that the terms in one sequence are twice the corresponding terms in the other sequence.
b. Form ordered pairs consisting of corresponding terms from two numerical	
patterns and graph the ordered pairs on a coordinate plane.	

Number and Operations in Base Ten (NBT)

Cluster Headings

A. Understand the place value system.

Content Standards

5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .
5.NBT.A.3 Read and write decimals to thousandths using standard form, word form, and expanded form (e.g., the expanded form of 347.392 is written as 3×100 $+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times(1 / 1000))$. Compare two decimals to thousandths based on meanings of the digits in each place and use the symbols >, $=$, and < to show the relationship.
5.NBT.A. 4 Round decimals to the nearest hundredth, tenth, or whole number using understanding of place value.
B. Perform operations with multi-digit whole numbers and with decimals to hundredths.
(See Table 3 - Properties of Operations)
5.NBT.B. 5 Fluently multiply multi-digit whole numbers (up to three-digit by four-digit factors) using appropriate strategies and algorithms.
5.NBT.B.6 Find whole-number quotients and remainders of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between operations; assess the reasonableness of answers using estimation strategies. (Limit division problems so that either the dividend or the divisor is a whole number.)

Number and Operations - Fractions (NF)

Cluster Headings

A. Use equivalent fractions as a strategy to add and subtract fractions.
(See Table 1 - Addition and Subtraction Situations for whole number situations that can be applied to fractions)

B. Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

(See Table 2 - Multiplication and Division Situations for whole number situations that can be applied to fractions)

Content Standards

5.NF.A.1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $\frac{2}{3}+\frac{5}{4}=\frac{8}{12}+\frac{15}{12}=\frac{23}{12}$. (In general $\left.\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}\right)$
5.NF.A. 2 Solve contextual problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators. Use benchmark fractions and number sense of fractions to estimate mentally and assess thȩ reasonableness of ąnswers. For example, recognize an incorrect result $\frac{2}{5}+\frac{1}{2}=\frac{3}{7}$, by observing that $\frac{3}{7}<\frac{1}{2}$.
5.NF.B. 3 Interpret a fraction as division of the numerator by the denominator $\left(\begin{array}{l}a \\ \frac{a}{b}\end{array}=a\right.$ \diamond b). For example, ${ }_{\frac{3}{4}}^{3}=3 \div 4$ so when 3 wholes are shared equally among 4 people, each person has a share of size ${ }_{4}^{3}$. Solve contextual problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers by using visual fraction models or equations to represent the problem. For example, if 8 people want to share 49 sheets of construction paper equally, how many sheets will each person receive? Between what two whole numbers does your answerlie?

	5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number or a fraction by a fraction. a. Interpret the product $\frac{a}{b} \times q$ as $a \times(q \div b)$ (partition the quantity q into b equal parts and then multiply by a). Interpret the product $\frac{a}{b} \times q$ as $(a \times q) \div$ b (multiply a times the quantity q and then partition the product into b equal parts). For example, use a visual fraction model or write a story context to show that ${ }_{-2}^{2} x 6$ can be interpreted as $2 x(6 \div 3)$ or $(2 \times 6) \div 3$. Do the same with $\frac{\frac{3}{2}}{3} \times \frac{4}{5}=\frac{8}{15}$ (In general, $\frac{\mathrm{a}}{\mathrm{b}} \mathrm{x} \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{ac}}{\mathrm{bd}}$.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles and represent fraction products as rectangular areas.
B. Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (See Table 2 - Multiplication and Division Situations for whole number situations that can be applied to fractions)	5.NF.B. 5 Interpret multiplication as scaling (resizing). a. Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. For example, know if the product will be greater than, less than, or equal to the factors. b. Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explain why multiplying a given number by a fraction less than 1 results in a product less than the given number; and relate the principle of fraction equivalence $\frac{a}{b}=\frac{(a \times n)}{(b \times n)}$ to the effect of multiplying ${ }_{\frac{a}{b}}$ by 1 .
	5.NF.B. 6 Solve real-world problems involving multiplication of fractions and mixed numbers by using visual fraction models or equations to represent the problem.
	5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number and compute such quotients. For example, use visual models and the relationship between multiplication and division to explain that (1/3) $\div 4=$ $1 / 12$ because (1/12) $\times 4=1 / 3$. b. Interpret division of a whole number by a unit fraction and compute such quotients. For example, use visual models and the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)$ $=4$. c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$ cup servings are in 2 cups of raisins?

Cluster Headings

Content Standards

A. Convert like measurement units within a given measurement system from a larger unit to a smaller unit.

B. Represent and interpret data.

5.MD.A. 1 Convert customary and metric measurement units within a single system by expressing measurements of a larger unit in terms of a smaller unit. Use these conversions to solve multi-step real-world problems involving distances, intervals of time, liquid volumes, masses of objects, and money (including problems involving simple fractions or decimals). For example, 3.6 liters and 4.1 liters can be combined as 7.7 liters or 7700 milliliters
5.MD.B. 2 Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
5.MD.C. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
a. Understand that a cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume and can be used to measure volume.
b. Understand that a solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
5.MD.C. 4 Measure volume by counting unit cubes, using cubic centimeters, cubic inches, cubic feet, and improvised units.
5.MD.C. 5 Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume of right rectangular prisms.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent whole-number products of three factors as volumes (e.g., to represent the associative property of multiplication).
b. Know and apply the formulas $V=I \times w \times h$ and $V=B \times h$ (where B represents the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.
c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

Geometry (G)

Cluster Headings

	5.G.A.1 Graph ordered pairs and label points using the first quadrant of the coordinate plane. Understand in the ordered pair that the first number indicates the horizontal distance traveled along the x-axis from the origin and the second number indicates the vertical distance traveled along the y-axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x - coordinate, y-axis and y-coordinate).
A. Graph points on the coordinate plane to solve real-world and mathematical problems.	5.G.A. 2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane and interpret coordinate values of points in the context of the situation.
B. Classify two- dimensional figures into categories based on their properties.	5.G.B. 3 Classify two-dimensional figures in a hierarchy based on properties. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.

Major content of the grade is indicated by the light green shading of the cluster heading and standard's coding.

	Major Content	

Table 1 Common addition and subtraction situations

	Result Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=?$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? $2+?=5$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? $?+3=5$ One-Step Problem
Take from	Five apples were on the table. I ate two apples. How many apples are on the table now? $5-2=?$	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5-?=3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? $\quad ?-2=3$ One-Step Problem
Put Together; Take Apart ${ }^{3}$	Total Unknown	Addend Unknown	Both Addends Unknown ${ }^{2}$
	Three red apples and two green apples are on the table. How many apples are on the table? $3+2=$?	Five apples are on the table. Three are red and the rest are green. How many apples are green? $3+?=5,5-3=?$	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? $\begin{aligned} & 5=0+5,5=5+0 \\ & 5=1+4,5=4+1 \\ & 5=2+3,5=3+2 \end{aligned}$
Compare ${ }^{\text {+ }}$	Difference Unknown	Bigger Unknown	Smaller Unknown
	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have? One-Step Problem	(Version with "more"): Julie has 3 more apples than Lucy. Julie has five apples. How many apples does Lucy have? $5-3=? \quad ?+3=5$ One-Step Problem
	("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? $2+?=5,5-2=?$	(Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? $2+3=?, 3+2=?$	(Version with "fewer"): Lucy has three fewer apples than Julie. Julie has five apples. How many apples does Lucy have?
		One-Step Problem ($\left.2^{\text {nd }}\right)$	One-Step Problem (1)

K: Problem types to be mastered by the end of the Kindergarten year.
1st: Problem types to be mastered by the end of the First Grade year, including problem types from the previous year. However, First Grade students should have experiences with all 12 problem types.
2nd: Problem types to be mastered by the end of the Second Grade year, including problem types from the previous years.

Table 2 Common multiplication and division situations ${ }^{1}$

	Unknown Product $3 \times 6=\text { ? }$	Group Size Unknown ("How many in each group?" Division) $3 \times ?=18, \text { and } 18 \div 3=?$	Number of Groups Unknown ("How many groups?" Division) $? \times 6=18 \text {, and } 18 \div 6=?$
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there in all? Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag? Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	If 18 plums are to be packed 6 to a bag, then how many bags are needed? Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
$\begin{gathered} \text { Arrays, }^{2}{ }^{\text {Area }} \end{gathered}$	There are 3 rows of apples with 6 apples in each row. How many apples are there? Area example. What is the area of a 3 cm by 6 cm rectangle?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row? Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be? Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
	A blue hat costs $\$ 6$. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat?
Compare	Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	$a \times b=$?	$a \times ?=p$, and $p \div a=$?	$? \times b=p$, and $p \div b=$?

${ }^{1}$ Adapted from Box 2-4 of Mathematics Learning in Early Childhood, National Research Council (2009, pp. 32, 33).
${ }^{2}$ The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.
${ }^{3}$ Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.

Table 3 The properties of operations

Here a, b and c stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system, and the complex number system.

$$
\begin{aligned}
& \text { Associative property of addition } \\
& \text { Commutative property of addition } \\
& \text { Additive identity property of } 0 \\
& \text { Associative property of multiplication } \\
& \text { Commutative property of multiplication } \\
& \text { Multiplicative identity property of } 1 \\
& \text { Distributive property of multiplication over addition } \\
& (a+b)+c=a+(b+c) \\
& a+b=b+a \\
& a+0=0+a=a \\
& (a \times b) \times c=a \times(b \times c) \\
& a \times b=b \times a \\
& a \times 1=1 \times a=a \\
& a \times(b+c)=a \times b+a \times c
\end{aligned}
$$

